
Skyline Community Search in Multi-valued Networks

Rong-Hua Li
Beijing Institute of Technology

Beijing, China
lironghuascut@gmail.com

Lu Qin
University of Technology

Sydney, Australia
Lu.Qin@uts.edu.au

Fanghua Ye
Sun Yat-Sen University

Guangzhou, China
smartyfh@outlook.com

Jeffrey Xu Yu
Chinese University of Hong Kong

Hong Kong, China
yu@se.cuhk.edu.hk

Xiao Xiaokui∗
National University of Singapore

Singapore
xkxiao@ntu.edu.sg

Nong Xiao and Zibin Zheng
Sun Yat-Sen University

Guangzhou, China
xiaon6@mail.sysu.edu.cn;
zhzibin@mail.sysu.edu.cn

ABSTRACT
Given a scientific collaboration network, how can we find a
group of collaborators with high research indicator (e.g., h-
index) and diverse research interests? Given a social network,
how can we identify the communities that have high influ-
ence (e.g., PageRank) and also have similar interests to a
specified user? In such settings, the network can be modeled
as a multi-valued network where each node has d (d ≥ 1)
numerical attributes (i.e., h-index, diversity, PageRank, sim-
ilarity score, etc.). In the multi-valued network, we want to
find communities that are not dominated by the other com-
munities in terms of d numerical attributes. Most existing
community search algorithms either completely ignore the
numerical attributes or only consider one numerical attribute
of the nodes. To capture d numerical attributes, we propose
a novel community model, called skyline community, based
on the concepts of k-core and skyline. A skyline community
is a maximal connected k-core that cannot be dominated by
the other connected k-cores in the d-dimensional attribute
space. We develop an elegant space-partition algorithm to
efficiently compute the skyline communities. Two striking
advantages of our algorithm are that (1) its time complexity
relies mainly on the size of the answer s (i.e., the number
of skyline communities), thus it is very efficient if s is small;
and (2) it can progressively output the skyline communities,
which is very useful for applications that only require part
of the skyline communities. Extensive experiments on both
synthetic and real-world networks demonstrate the efficiency,
scalability, and effectiveness of the proposed algorithm.

CCS CONCEPTS
• Information systems → Social networks;

KEYWORDS
Community search; k-core; Skyline; Massive graphs

∗This work partially done while Xiao Xiaokui was with NTU.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3183736

ACM Reference Format:
Rong-Hua Li, Lu Qin, Fanghua Ye, Jeffrey Xu Yu, Xi-
ao Xiaokui, and Nong Xiao and Zibin Zheng. 2018. Sky-
line Community Search in Multi-valued Networks. In Pro-
ceedings of 2018 International Conference on Management of
Data (SIGMOD’18). ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3183713.3183736

1 INTRODUCTION
Many real-world networks such as social networks consist
of community structures. Discovering the communities from
a network is a fundamental problem in network analysis.
Recently, a query-dependent community discovery problem
called community search has attracted much attention in the
database community due to a large number of applications
[10–13, 15, 22]. The goal of the community search problem is
to find those densely-connected subgraphs in a network that
satisfy the query conditions.

In many real-world applications, the nodes in a network
are often associated with numerical attributes. Such numeri-
cal attributes can be obtained from the profiles of the nodes
or the statistical information of the nodes computed by dif-
ferent network analysis methods (e.g., the degree, PageRank,
influence, etc.). For example, in the Aminer scientific collabo-
ration network (aminer.org), each author has several numer-
ical attributes, including the number of published papers,
h-index, activity, diversity, sociability, etc. Such network da-
ta is typically modeled as a multi-valued network where each
node is associated with d (d ≥ 1) numerical attributes.

Given a multi-valued network, how can we find the com-
munities that are not dominated by the other communities
in terms of d numerical attributes? For instance, consider a
pair of numerical attributes (h-index, diversity) in the Amin-
er scientific collaboration network. How can we find a group
of collaborators with high h-index and diverse research in-
terests in the Aminer network? Similarly, consider two nu-
merical attributes (#papers, activity). How can we find a
community in the Aminer network so that its members not
only have a number of publications, but also they are very
active in their research areas in recent years?

Most existing community search algorithms either com-
pletely ignore the numerical attributes or only consider one
numerical attribute of the nodes [15], and therefore they
cannot be directly used to answer these questions. A naive
approach to address these questions is described as follows.
First, we can compute the average value (or other linear com-
binations) over all d numeric attributes for each node in the
multi-valued network. Then, based on the average value of
each node, we apply the previous community search algorith-
m for one numerical attribute [15] to identify communities.
This naive method, however, cannot fully capture all the in-
teresting communities in the d-dimensional attribute space.

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

457

This is because a community with high average value in each
dimension could also be dominated by the other communities
(as confirmed in our experiments). To fully characterize all
those interesting communities, we propose a novel communi-
ty model called skyline community based on the concepts of
k-core [20] and skyline [4]. A skyline community is a maxi-
mal connected k-core (not necessary the maximal k-core as
defined in [20]) that is not dominated by the other connect-
ed k-cores in the d-dimensional attribute space (the detailed
definition can be found in Section 2). Except for finding in-
teresting communities in a scientific collaboration network,
our skyline community model can also be used for many
other interesting applications, two of which are introduced
as follows.
Personalized influential community search. In an on-
line social network, a user may want to discover the influen-
tial communities with similar interests. For example, in the
Facebook social network, a football-fan user would like to
find the influential football-fan groups, as these groups play
important roles for football information dissemination in the
network. In this application, we can extract two numeric at-
tributes for each user: the influence and similarity (i.e., the
similarities between the query user and the other users in
the social network). By discovering the skyline communities
on these numeric attributes, we can obtain the communities
that are not dominated by the others in terms of both influ-
ence and similarity. Therefore, from the skyline communities,
the query user can get the desired communities that are not
only influential, but also have similar interests to him.

Close social groups discovery in LBSN. The location-
based social network (LBSN) is a special social network in
which each user is associated with a location. To join similar
and close social groups, a user in an LBSN may wish to find
the social groups such that they not only have similar inter-
ests, but they are also close to him. Similar query may also
help the companies to perform marketing or promotion ac-
tivities. For example, the fast food company KFC may want
to identify the social groups that are not only interested in
KFC’s food, but they are also close to the location of KFC.
In these applications, we can extract two numeric attributes
for each user in the LBSN: (1) the similarity between the
query and the user, and (2) the distance between the query
location and the user’s location. By mining the skyline com-
munities on these numeric attributes, we are able to obtain
the desired social groups.
Contributions. In this paper, we formulate and provide
efficient solutions for discovering skyline communities in a
multi-valued network. The contributions of this paper are
summarized below.

New community model. We propose the skyline community
model which can be applied to discover the communities
that are not dominated by the other communities in a multi-
valued network. To the best of our knowledge, the skyline
community model is the first community model for multi-
valued networks, and our work is also the first to introduce
skyline for community modeling.

Novel algorithms. We first develop an efficient algorithm,
called SkylineComm2D, to find all the skyline communi-
ties in the 2D case, i.e., d = 2. The time complexity of
SkylineComm2D is O(s(m + n)) where s denotes the num-
ber of 2D skyline communities (i.e., the answer size), and
the space complexity of SkylineComm2D is O(m + n + s),
which is linear w.r.t. the graph and answer size. To handle
the high-dimensional case (i.e., d ≥ 3), we propose a basic

algorithm and an elegant space-partition algorithm to find
the skyline communities efficiently. Two striking features of
the space-partition algorithm are that (1) its worst-case time
complexity is dependent mainly on the answer size, thus it
is very efficient when the answer size is not very large; and
(2) it is able to progressively output the skyline communi-
ties during the execution of the algorithm, and therefore it
is very useful for applications that only require part of the
skyline communities.

Extensive experiments. We conduct extensive experiments
over both synthetic and real-world networks to evaluate the
proposed algorithms. The results show that SkylineComm2D
is very efficient which takes less than 3.5 seconds to com-
pute all the skyline communities in a real-world network
with 2.5 million nodes and 7.9 million edges. The results also
demonstrate the high efficiency and scalability of the space-
partition algorithm. For example, in the same million-scale
network, the space-partition algorithm is able to derive all
the skyline communities within 500 seconds when d = 3. In
addition, we conduct comprehensive case studies to evaluate
the effectiveness of the proposed skyline community model.
The results show that many interesting and meaningful com-
munities can be discovered using our model that cannot be
found by other methods.

2 PROBLEM STATEMENT
We model a graph with d numerical attributes as a multi-
valued graph G = (V,E,X), where V (|V | = n) and
E (|E| = m) denote the set of nodes and edges respec-
tively, and X (|X| = n) is a set of d-dimensional vec-
tors. In a multi-valued graph, each node v ∈ V is asso-
ciated with a d-dimensional real-valued vector denoted by
Xv = (xv

1 , · · · , xv
d), where Xv ∈ X and xv

i ∈ R. For conve-
nience, we refer to the i-th dimension (i = 1, · · · , d) as the
xi dimension. Suppose without loss of generality that on the
xi dimension, xv

i for all v ∈ V form a strict total order, i.e.,
xv
i ̸= xu

i for any u ̸= v. It is important to note that if this
assumption does not hold, we can easily construct a strict
total order by using the node identity to break ties for any
xv
i = xu

i . The d-dimensional vector Xv represents the values
of the node v w.r.t. d different numerical attributes.

Based on the multi-valued graph model, we study the
community search problem in a network with numerical
attributes. To model the structural cohesiveness, we use
the widely-used k-core model to represent the communities
[3, 10, 15, 20, 22]. Specifically, denote by δ(v,G) the degree of
node v in the multi-valued graph G. LetH = (VH , EH) be an
induced subgraph of G, i.e., VH ⊆ V and EH = {(u, v)|u, v ∈
VH , (u, v) ∈ E}. A k-core H is an induced subgraph where
each node v ∈ H has a degree at least k, i.e., δ(v,H) ≥ k.

The maximal k-core H̃ is a k-core such that there is no super
k-core containing H̃. For each node v ∈ V , the core number
of v is the maximal k such that a k-core contains v. Note
that the maximal k-core is not necessarily connected. To
avoid confusion, we refer to a connected k-core as a k-ĉore.

Clearly, the traditional k-core model cannot capture the
d-dimensional numerical attributes of a community. Li et al.
[15] recently proposed an influential community model which
can capture the influence of a community. Each node in their
model is associated with an influence value, and the influence
of a community is defined as the minimum influence value
among all the values of its members. In the context of multi-
valued graph, the influential community model only works
for the d = 1 case, because it considers the one-dimensional

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

458

(1D) numerical attribute of a community. In this paper, we fo-
cus on the community search problem for the d-dimensional
case (d ≥ 1), where each node is associated with d real val-
ues. Below, we first give a novel definition to characterize a
community for the d-dimensional case (d > 1).

The skyline community model. Note that it is nontriv-
ial to generalize the existing community model for the 1D
case (i.e., the influential community model) [15] to the d-
dimensional case (d > 1). The definition in [15] of the influ-
ential community model is based on the comparison of the
influence values of the communities. However, unlike the 1D
case, it is not easy to compare two communities because each
community may have d (d > 1) values w.r.t. d different di-
mensions. As a result, the influential community model can-
not be directly extended to the d-dimensional case (d > 1).
To overcome this issue, we introduce the domination rela-
tionship between two communities, which will be used to
define our skyline community model.

Let H = (VH , EH) be an induced subgraph of G. Fol-
lowing the definition of the influence value of a community
in [15], we define the value of H on the xi dimension (for
i = 1, 2, · · · , d) as

fi(H) = minv∈VH
{xv

i }. (1)

Below, we briefly discuss why we use the “min” operator in
Eq. (1) to define fi(H). The motivation of this definition is
the same as that of the influential community model [15].
By using the “min” operator, we can ensure that all the
members in H on the xi dimension have a value no less than
fi(H). That is to say, if fi(H) is large, each node in H must
have a large value on the xi dimension. This is very useful
for excluding outliers in H (i.e., the nodes with small values
on the xi dimension). For example, consider the case of the
Aminer scientific collaboration network. Assume that the xi

dimension denotes the h-index of the authors and we want to
find a group of collaborators with high h-index. Clearly, we
can use the above definition of fi(H) to measure the research
impact of a group of collaborators.

Definition 1. Let H = (VH , EH) and H ′ = (VH′ , EH′)
be two communities. If fi(H) ≤ fi(H

′) for all i = 1, · · · , d,
and there exists fi(H) < fi(H

′) for a certain i, we call that
H ′ dominates H, denoted by H ≺ H ′.

Intuitively, an interesting community in a multi-valued
graph G should be a cohesive subgraph which also cannot
be dominated by other communities. For example, in the
Aminer network, assume that we consider two numerical at-
tributes: h-index and diversity. In this example, we may want
to find a community that is not dominated by other commu-
nities in both h-index and diversity.

Based on this intuition, we use the concepts of k-core [20]
and skyline [4] to define a new community model in the multi-
valued graph, called skyline community. To the best of our
knowledge, we are the first to use the concept of skyline for
community modeling. In our model, we make use of k-core
to represent the cohesive property of a community, as it is
successfully used for community search applications [10, 11,
15, 22].

Definition 2. Given a multi-valued graph G = (V,E,X)
and an integer k. A skyline community with a parameter k
is an induced subgraph H = (VH , EH , XH) of G such that it
satisfies the following properties.

• Cohesive property: H is a k-ĉore (i.e., H is a connect-
ed k-core);

• Skyline property: there does not exist an induced sub-
graph H ′ of G such that H ′ is a k-ĉore and H ≺ H ′;

v6

v2

v1

v3

V4

v5

v1

v2

v3

v4

v5

v6

X1 X2 X3

8 14 7

9

9

12

11 17 3

6

15

5

10

4

7

16

10

8

Figure 1: Running example

• Maximal property: there does not exist an induced sub-
graph H ′ of G such that (1) H ′ is a k-ĉore, (2) H ′ con-
tains H, and (3) fi(H

′) = fi(H) for all i = 1, · · · , d.

Note that without the maximal property, there could be a
large number of skyline communities with the same f values
on the d dimensions. The maximal property in Definition 2
ensures that a skyline community is not contained in a larger
skyline community with the same f values on the d dimen-
sions, and therefore avoid redundancy. It is worth noting that
the k-ĉore in our definition is not necessarily the maximal
k-core as defined in [16, 20], and the number of k-ĉores could
be exponentially large. The following example illustrates the
definition of the skyline community.

Example 1. Consider the graph shown in Fig. 1. The
left panel is a graph with 6 nodes, and the right panel
shows the values of these nodes in three different dimen-
sions. Suppose for instance that k = 2. Then, by Defini-
tion 2, H1 = {v1, v2, v3} is a skyline community with values
f(H1) = (8, 14, 3), because there does not exist a 2-ĉore that
can dominate it, and it is also the maximal subgraph that
satisfies the cohesive and skyline properties. Similarly, H2 =
{v2, v4, v5, v6} is a skyline community with f(H2) = (6, 8, 4).
The subgraph H3 = {v4, v5, v6} is not a skyline community,
because it is contained in H2 = {v2, v4, v5, v6} which has the
same f values as H3. The subgraph H4 = {v2, v3, v4, v5, v6}
is also not a skyline community, as f(H4) = (6, 8, 3) is dom-
inated by H1 and H2.

Discussions. Apart from the “min” operator used in E-
q. (1), another two possible operators may be “max” and
“sum”. These two operators, however, are not appropriate
for skyline community modeling. The reason is that unlike
the “min” operator, these two operators are monotonic w.r.t.
the community size, i.e., a community has a larger f value
than its sub-communities. As a result, the answers are al-
ways the set of maximal k-ĉores of the original multi-valued
graph, which are independent of the numerical attributes of
the nodes in the graph.

The skyline community search problem. Given a multi-
valued graph G = (V,E,X) and an integer k, the problem is
to find all the skyline communities from G with the param-
eter k. More formally, let H be the set of all k-ĉores in G.
We aim to compute a subset R of H which is defined as

R = {H ∈ H|¬∃H′, H′′ ∈ H : H ≺ H′, H ⊂ H′′∧f(H) = f(H′′)},

where H ⊂ H′′ denotes that H is a subgraph of H′′ and
H ̸= H′′, and f(H) = f(H′′) means that fi(H) = fi(H

′′) for
i = 1, · · · , d.

Note that if d = 1, there is only one skyline communi-
ty by Definition 2. Moreover, we can easily show that when
d = 1, the skyline community search problem is equivalent
to the problem of finding the top-1 influential community
[15]. Therefore, if d = 1, we can use the algorithms proposed
in [15] to find the skyline community efficiently. However,

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

459

when d > 1, the problem becomes much harder and the al-
gorithms proposed in [15] cannot be used. Below, we discuss
the challenges of our problem.
Challenges. The challenges to solve our problem are t-
wofold. First, the number of k-ĉores (i.e., connected k-
cores) in a multi-valued network can be exponentially large.
Thus, it is intractable to enumerate all the k-ĉores to i-
dentify the skyline communities. Second, unlike the tradi-
tional d-dimensional skyline computation problem [4], the
d-dimensional data points in our problem, which correspond
to the k-ĉores, are not given. As a result, it is challenging
to devise an efficient algorithm to detect the skyline commu-
nities without enumerating all the k-ĉores. In the following
sections, we will develop several efficient algorithms to over-
come these challenges.

3 ALGORITHM FOR d = 2
In this section, we propose an efficient algorithm to find all
skyline communities in the 2D case (i.e., d = 2). The algo-
rithm for the 2D case will be used as the building-block when
we process the d > 2 case. In the rest of this paper, we as-
sume without loss of generality that the values of the nodes
on all d dimensions are positive (i.e., xu

i > 0 for all u ∈ V
and i = 1, · · · , d). For example, in the Aminer network, the
numerical attributes such as h-index and the number of pa-
pers are positive. Note that if this assumption does not hold,
we can revise xu

i by x̃u
i = xu

i − minv∈V {xv
i } + ϵ > 0 for all

i = 1, · · · , d and u ∈ V which does not affect the correctness
of all the proposed algorithms (ϵ is a positive constant).

Recall that in the 2D case each skyline community H has
two values (f1(H), f2(H)). If H = ∅, we define fi(H) = 0 for
i = 1, 2. For each skyline community H, we mainly focus on
devising an algorithm to compute (f1(H), f2(H)), because
we can easily extract the community from G based on these
two values.

The basic idea of our algorithm is as follows. First, we on-
ly consider the x2 dimension in graph G, and compute the
maximal f2 value, denoted by f∗2 , among all the k-ĉores. We
find a maximal k-ĉore (denoted by H̃) which achieves f∗2 by
recursively deleting the node with the smallest x2 value until
the graph contains no k-core. Note that the maximal k-ĉore
H̃ may not be a skyline community. This is because H̃ could
be dominated by a community H which has the same f2 val-
ue, but a larger f1 value than H̃. However, such a community
H must be contained in H̃, because it has the same f2 val-
ue as H̃, which is maximal over all the k-ĉores. Therefore,
to find a skyline community, we can apply the same proce-
dure to compute the maximal f1 value, denoted by f∗1 , over
all the connected sub-k-cores contained in H̃. The resulting
k-ĉore denoted by H1 must be a skyline community with val-
ues (f1(H1), f2(H1)), where f1(H1) = f∗1 and f2(H1) = f∗2 .
This is because f∗2 is maximal among all the k-ĉores, thus no
other k-ĉore that can dominate it on the x2 dimension. On
the other hand, f∗1 is maximal over all the k-ĉores with the
same f∗2 value, thus no k-ĉore exists that can dominate it. S-
ince the above recursive procedure ensures that the resulting
k-ĉore is maximal, it must be a skyline community.

Using the above method, we can find one skyline com-
munity which has the maximal f2 value of all the skyline
communities. The challenge is how to find the other skyline
communities. We can tackle this challenge based on the fol-
lowing result. All the proofs in this paper can be found in
the Appendix.

Lemma 1. Let H1 with values (f1(H1), f2(H1)) be the sky-
line community that has the maximal f2 value over all the

skyline communities. The nodes in G whose x1 values are
no larger than f1(H1) cannot then be contained in the other
skyline communities.

Based on Lemma 1, we can shrink the graph G by remov-
ing all the nodes whose x1 values are no larger than f1(H1).
We invoke the above procedure in the reduced graph to find
the next skyline community H2. It should be noted that H2

must be different from H1, because its f1 value is larger than
f1(H1). We can iteratively invoke this procedure to find all
the skyline communities until the reduced graph contains no
k-core.

Algorithm 2 implements the above procedure. In Algorith-
m 2, I denotes the set of constraints. Initially, I = {x1 >
0, x2 > 0}, which means that no constraint is active (be-
cause xu

i > 0 for all u ∈ V and i = 1, 2 by our assumption).
F denotes the set of fixed nodes. For the 2D case, there is
no need to fix nodes, thus F = ∅. However, for the d > 2
case, we will use the set F to maintain the fixed nodes (see
Sections 4 and 5), which cannot be deleted by the algorith-
m. To find all the 2D skyline communities, we can invoke
SkylineComm2D(G, {x1 > 0, x2 > 0}, ∅). The detailed algo-
rithm is described as follows.

First, Algorithm 2 invokes Algorithm 1 to calculate the
maximal f2 over all the skyline communities (line 1). Specif-
ically, Algorithm 1 first deletes all the invalid nodes (i.e.,
shrinks the graph, line 1 in Algorithm 1), and then com-
putes the maximal k-core H (line 2 in Algorithm 1). The
algorithm then recursively deletes the node with the small-
est x2 value until H = ∅ (lines 6-12 in Algorithm 1). The
algorithm returns the maximal f2 value over all the k-ĉores
subject to the constraints I.

After determining f2, Algorithm 2 iteratively computes
the skyline communities in lines 2-5. In line 3, Algorithm 2
first refines I by the constraint x2 ≥ f2. Here we use a
notation ∩̄ to denote the refinement operator. In particu-
lar, if I = {x1 > 0, x2 > 0}, then Ĩ = I∩̄{x2 ≥ f2} =
{x1 > 0, x2 ≥ f2}, because the constraint x2 > 0 in I is
refined by x2 ≥ f2. Then, Algorithm 2 calls Algorithm 1
with the refined constraints Ĩ to calculate the maximal f1
value (line 3). It should be noted that in Algorithm 1, the
constraint x2 ≥ f2 ensures that all the nodes with x2 values
smaller than f2 are deleted. Therefore, the obtained f1 val-
ue in line 3 (Algorithm 2) is the maximal f1 value over all
the k-ĉores with the same f2 value. By definition, there is
a skyline community that has values (f1, f2). In line 4, the
algorithm adds (f1, f2) into the answer set. Subsequently, in
line 5, the algorithm refines the constraint by (x1 > f1),
because nodes with x1 values no larger than f1 cannot be
included in the undiscovered skyline communities (see Lem-
ma 1). Then, the algorithm calculates the maximal f2 value

subject to the refined constraints Ĩ. After obtaining f2, the
algorithm iteratively applies the same procedure to compute
the next skyline community. The algorithm terminates when
f2 = 0, which means that no k-core exist that satisfies the
refined constraints. The correctness of Algorithm 2 is shown
in the following theorem.

Theorem 1. Algorithm 2 correctly computes all the 2D
skyline communities.

We analyze the time and space complexity of Algorithm 2
in the following theorem.

Theorem 2. Let s be the number of skyline communities
in G. Then, the worst case time and space complexity of
Algorithm 2 is O(s(m+ n)) and O(m+ n+ s) respectively.

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

460

Algorithm 1 DimMax(G, I,F , d)

Input: A multi-valued graph G, constraints I, fixed nodes set F, d.
Output: The maximal value on the d-th dimension.

1: G← delete all the nodes in G that violate the constraints I;
2: H ← compute the maximal k-core in G;
3: if F ̸= ∅ then
4: H ← the maximal k-ĉore in H that contains F;
5: Compute fd(H) based on Eq. (1);
6: fd ← fd(H); visit(u)← 0 for all u ∈ H;
7: while H ̸= ∅ do
8: Let u ∈ H be the smallest-value node on the xd dimension;
9: flag ← 1; flag ← DFS(u);

10: if flag = 0 then break;
11: if F ̸= ∅ then
12: H ← the maximal k-ĉore in H that contains F;
13: fd ← max{fd, fd(H)};
14: return fd;

15: Procedure DFS (u)
16: if u ∈ F then return 0; {// the fixed node cannot be deleted}
17: visit(u)← 1;
18: Let N(u,H) be the neighborhood of u in H;
19: Let δ(u,H) be the degree of u in H;
20: for all v ∈ N(u,H) and visit(v) = 0 do
21: δ(v,H)← δ(v,H)− 1;
22: if δ(v,H) < k then DFS(v);
23: Delete u from H;
24: return 1;

Algorithm 2 SkylineComm2D(G, I,F)

Input: A multi-valued graph G, constraints I, fixed nodes set F.
Output: Skyline Communities in G.

1: f2 ← DimMax (G, I,F, 2); R ← ∅;
2: while f2 > 0 do

3: Ĩ ← I∩̄{x2 ≥ f2}; f1 ← DimMax (G, Ĩ,F, 1);
4: R ← R∪ {(f1, f2)};
5: Ĩ ← I∩̄{x1 > f1}; f2 ← DimMax (G, Ĩ,F, 2);
6: return R;

Note that in the 2D case, the total number of skyline
communities s is bounded by n, because the number of f2
values of the skyline communities is bounded by n. Thus, the
time and space complexity of Algorithm 2 is also bounded by
O(n(m+n)) and O(m+n) respectively. In our experiments,
we will show that s is typically very small, thus our algorithm
is very efficient in practice.

4 THE BASIC ALGORITHM FOR d ≥ 3
Recall that Algorithm 2 can iteratively compute all the 2D
skyline communities once it has found the first skyline com-
munity. To find the first skyline community, Algorithm 2
computes the maximal f2 value, and applies a similar proce-
dure to determine the f1 value. Unfortunately, this idea does
not work in the case of d ≥ 3. This is because for the d ≥ 3
case, we do not know how to determine the remaining val-
ues (f1 and f2) of a skyline community after computing the
maximal f3 value. Furthermore, even if we can find the first
skyline community for the d ≥ 3 case, it is still quite non-
trivial to find all the remaining skyline communities. Below,
we develop a basic algorithm to tackle these challenges based
on an in-depth analysis of the skyline community model. For
convenience, we first devise a basic algorithm to handle the
3D case (i.e., d = 3), and then we extend this algorithm to
handle the d > 3 case.

4.1 Handling the d = 3 case

The dimension reduction idea. Our algorithm is based
on a dimension reduction idea which involves three steps.
First, we derive all the possible f3 values that the skyline
communities may have on the x3 dimension. Second, for each
possible f3 value, denoted by f∗3 , we find all the 2D skyline
communities on the x1 and x2 dimensions such that the f3

values of these skyline communities equal f∗3 . Here we refer
to a skyline community based on the x1 and x2 dimensions
as a 2D skyline community, and all those based on three
dimensions as 3D skyline communities. Finally, we merge the
resulting skyline communities for all possible f3 values, and
invoke a traditional skyline algorithm [4, 14] to determine
all the 3D skyline communities.

Let F3 be the set of all the possible f3 values. For the first
step, a naive solution is to set F3 to be the set of all the
x3 values of the nodes in G, because the f3 values of all the
skyline communities must take from the set of all the x3 val-
ues of nodes. The second step can be implemented as follows.
We remove all the nodes whose x3 values are smaller than
f∗3 , and fix the node u with xu

3 = f∗3 (a fixed node denotes
that the node cannot be deleted by the algorithm). Note that
only one node u with xu

3 = f∗3 can be fixed, because all the
x3 values form a total order by our assumption. We invoke
SkylineComm2D with constraint I = {x3 ≥ f∗3 } and fixed-
point set F = {u} to compute the 2D skyline communities
on the x1 and x2 dimensions. It can be easily shown that the
resulting communities are 2D skyline communities (on the
x1 and x2 dimensions) with f3 values equaling f∗3 .

An improved implementation. The naive implemen-
tation is inefficient because it needs to invoke the
SkylineComm2D algorithm |F3| = n times. Here we propose
an improved implementation based on an interesting con-
nection between our problem and the influential community
search problem [15].

Recall that the influential community model is tailored
to the network with only one numerical attribute [15]. In
a multi-valued network with d numerical attributes, the in-
fluential community can be defined on each dimension xi

(i = 1, · · · , d). Specifically, on the xi dimension, a commu-
nity H is called an influential community [15] if (1) it is a
connected k-core (i.e., k-ĉore), and (2) there does not exist a
k-ĉore H ′ such that H ′ contains H and fi(H

′) = fi(H) (see
Eq. (1)). Let Ti be the set of values of all the influential com-
munities defined on the xi dimension. Ti can be computed
using the influential community search algorithm described
in Algorithm 3 [15]. In particular, Algorithm 3 iteratively
deletes the smallest-value node on the xi dimension, and
records the fi values of the current maximal k-ĉore which
corresponds to the value of an influential community [15].

Note that both the skyline communities and influential
communities are k-ĉores satisfying a maximal property; and
both the fi values of the skyline communities and the values
of the influential communities on the xi dimension (i.e., Ti)
are defined by the “min” operator (Eq. (1)). Intuitively, the
fi values of the skyline communities should be contained in
Ti because Ti consists of all the possible values of the maxi-
mal k-ĉores defined by the “min” operator. Indeed, Lemma 2
shows that the fi values of the skyline communities must be
taken from Ti.

Lemma 2. For each dimension xi (i = 1, · · · , d), the fi
values of all the skyline communities are contained in the set
Ti which is computed by Algorithm 3.

Based on Lemma 2, we can set F3 = T3 in our algorithm.
Since |T3| ≤ n and can be substantially smaller than n in
practice [15], this improved implementation is much more
efficient than the naive implementation.

Our algorithm is depicted in Algorithm 4. In line 1, we
compute F3 by invoking Algorithm 3 based on the x3 dimen-
sion. In lines 2-7, we calculate the 2D skyline communities
for each f3 ∈ F3. The algorithm first fixes the node u that

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

461

Algorithm 3 [15]InfComm(G, d)

Input: A multi-valued graph G, d.
Output: All the fd values.

1: H ← the maximal k-core of G; Td ← ∅;
2: while H ̸= ∅ do

3: Let H̃ be the maximal connected component of H with smallest fd
value, denoted by f∗

d ;

4: Td ← Td ∪ {f∗
d }; Let u ∈ H̃ be the node that xu

d = f∗
d ;

5: InfCommDFS(u);
6: return Td;

7: Procedure InfCommDFS(u)
8: for all v ∈ N(u,H) do
9: Delete edge (u, v) from H;

10: if δ(v,H) < k then InfCommDFS(v);
11: Delete node u from H;

Algorithm 4 Basic3D(G, I,F)

Input: A multi-valued graph G, constraints I, fixed nodes set F.
Output: Skyline Communities in G.

1: F3 ← InfComm(G, 3); R ← ∅;
2: for all f3 ∈ F3 do

3: Let u be the node that xu
3 = f3; F̃ ← F ∪ {u};

4: Ĩ ← I∩̃{x3 ≥ f3};
5: T ← SkylineComm2D(G, Ĩ, F̃); {// Compute skyline communities

based on the first two dimensions.}
6: for all (f1, f2) ∈ T do
7: R ← R∪ {f1, f2, f3};
8: return Skyline(R);

Algorithm 5 BasicHighD(G, I,F , d)

Input: A multi-valued graph G, constraints I, fixed nodes set F.
Output: Skyline Communities in G.

1: if d = 3 then return Basic3D(G,I,F);
2: Fd ← InfComm(G, d); R ← ∅;
3: for all fd ∈ Fd do

4: Let u be the node with xu
d = fd; F̃ ← F ∪ {u};

5: Ĩ ← I∩̃{xd ≥ fd};
6: T ← BasicHighD(G, Ĩ, F̃, d− 1);
7: for all (f1, · · · , fd−1) ∈ T do

8: R ← R∪ {f1, · · · , fd−1, fd};
9: return Skyline(R);

xu
3 = f3 (line 3), because the node u must be contained in

all the 2D skyline communities whose values on the x3 di-
mension are equal to f3. In line 4, the algorithm refines the
constraint I by {x3 ≥ f3} which indicates that the nodes
whose x3 values are smaller than f3 will be removed. The
algorithm then invokes Algorithm 2 to compute the 2D sky-
line communities based on the x1 and x2 dimensions (line 5).
Lastly, the algorithm combines the results (lines 6-7), and
applies a traditional skyline algorithm to determine all the
3D skyline communities (line 8).

We analyze the correctness and complexity of Algorithm 4
in Theorem 3.

Theorem 3. Algorithm 4 correctly finds all the 3D skyline
communities, and the worst-case time and space complexity
of Algorithm 4 is O(n2(m+ n)) and O(n2) respectively.

4.2 Handling the d > 3 case
We generalize Algorithm 4 to handle the d > 3 case in Algo-
rithm 5. The general procedure is very similar to Algorith-
m 4. The main difference is that the algorithm recursively
invokes itself with a parameter d− 1 to compute the (d− 1)-
dimensional skyline communities (line 6). The recursive pro-
cedure terminates when d = 3 (line 1), because we invoke
Algorithm 4 to compute the 3D skyline communities. The
correctness analysis of Algorithm 5 is also similar to that of
Algorithm 4, thus we omit the details for brevity. Below, we
analyze the complexity of Algorithm 5.

Theorem 4. For d ≥ 3, the worst-case time and space
complexity of Algorithm 5 is O(nd−1(m+n+(d−1) logd−3 n))
and O(nd−1) respectively.

Note that the above complexity is the worst-case complex-
ity. In practice, since the number of skyline communities in
the d-dimensional space is much smaller than O(nd−1) and
also d is very small (e.g., d ≤ 5), our basic algorithm works
for many real-world networks as shown in the experiments.

4.3 A pruning rule
We present a simple but efficient pruning rule to speed up
the basic algorithms. When we fix the node u with xu

d = fd
in both Algorithm 4 (line 3) and Algorithm 5 (line 4), we
can use the d-dimensional values of node u for pruning, i.e.,
Xu = {xu

1 , · · · , xu
d}. Since all the (d − 1)-dimensional sky-

line communities computed by fixing u must contain u, the
values of u form an upper bound of all those skyline com-
munities. Therefore, when fixing u, we first check whether u
is dominated by the already computed skyline communities.
If this is the case, we do not need to recursively invoke the
algorithm to compute the (d − 1)-dimensional skyline com-
munities (line 5 in Algorithm 4 and line 6 in Algorithm 5),
because those communities are definitely dominated by the
already computed skyline communities. Using this pruning
rule, we can save a number of recursive calls in the basic
algorithms. To implement this pruning rule, we first sort the
set Fd in a decreasing order, and then compute the skyline
communities for each fd ∈ Fd following this order. When we
fix u (line 3 in Algorithm 4 and line 4 in Algorithm 5), we
check whether (xu

1 , · · · , xu
d−1) is dominated by the already

computed (d − 1)-dimensional skyline communities. If this
is the case, u is dominated because the fd values of all the
already computed (d − 1)-dimensional skyline communities
are larger than xu

d , and thus there is no need to recursive-
ly invoke the algorithm to calculate the (d− 1)-dimensional
skyline communities with fixed u.

5 THE SPACE-PARTITION METHOD
Although the pruning rule significantly accelerates the basic
algorithm, it is still inefficient for the d > 3 case because it
needs to compute a large number of invalid skyline commu-
nities. In this section, we propose a more efficient algorithm
based on a novel space-partition idea. The worst-case time
complexity of our new algorithm relies mainly on the num-
ber of skyline communities, i.e., the answer size, thus it is
very efficient if the answer size is not very large. Unlike the
basic algorithm, the new algorithm outputs the skyline com-
munities progressively, and no invalid skyline community is
generated. This progressive feature is very useful when the
applications only need to compute part of the skyline com-
munities. Below, we first consider the d = 3 case, and then
we extend our algorithm to handle the d > 3 case.

5.1 Handling the d = 3 case
The key idea. The basic idea of our new algorithm is that
we compute the skyline communities following the decreas-
ing order of the f3 values of the 3D skyline communities. In
other words, we first compute the set of 3D skyline commu-
nities that have the largest f3 value, and then calculate the
3D skyline communities having the second-largest f3 value,
etc. The challenge is how to implement this procedure with-
out computing invalid skyline communities. Our solution is
detailed as follows.

Let H be the set of 3D skyline communities that have
the maximum f3 value. H can be easily computed by the
following procedure. First, we invoke the DimMax algorithm

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

462

(Algorithm 1) with constraint I = {x1 > 0, x2 > 0} to
derive the largest f3 value in G, denoted by f∗3 . Then, we
fix the node u with xu

3 = f∗3 and invoke SkylineComm2D
with constraint I = {x1 > 0, x2 > 0} and fixed-point set
F = {u} to compute the 2D skyline communities on the x1

and x2 dimensions. Clearly, all the resulting communities are
valid 3D skyline communities having the largest f3 value.

Since f∗3 is maximum, the f3 values of the remaining 3D
skyline communities in G must be smaller than f∗3 . Hence,
the (f1, f2) values of the remaining 3D skyline communities
cannot be dominated by those of the skyline communities
in H. By the skyline property, all the (f1, f2) values of the
3D skyline communities in H form a staircase-like shape in
the 2D space. For ease of understanding, we use an example
shown in Fig. 2(a) to illustrate our idea. In this example,
we have three 3D skyline communities in H = {H1, H2, H3},
and the label ‘*’ denotes the 3D skyline communities on the
x1 and x2 dimensions. Clearly, the space below the staircase-
like shape is dominated by the skyline communities in H
which can be safely pruned. The (f1, f2) values of the re-
maining 3D skyline communities must be located on the top
of the staircase-like shape.

Obviously, the maximum f3 value of the remaining 3D
skyline communities is the second-largest f3 value over all
the 3D skyline communities. However, it is challenging to
derive the maximum f3 value of the remaining 3D skyline
communities. This is because (1) the (f1, f2) values of the
remaining 3D skyline communities are located on the top of
the staircase-like shape which forms an irregular 2D space
(see Fig. 2(a)), and (2) we cannot directly apply DimMax to
compute the maximum f3 value given that the (f1, f2) values
are located in such an irregular 2D space.

To overcome this challenge, we propose a space-partition
approach. The key step of our approach is to partition the
irregular 2D space (the 2D space on the top of the staircase-
like shape) into several overlapped regular 2D subspaces, in
which the maximum f3 value can be computed by DimMax.
Formally, the regular 2D space is defined as follows.

Definition 3. Given two dimensions x1 and x2, a 2D
space is called a regular 2D space if and only if it can be
represented by a pair of constraints (x1 > f1, x2 > f2), where
(f1, f2) is a 2D point.

Note that the above definition of the regular 2D space can
be directly extended to the high-dimensional case. Again,
we use the example shown in Fig. 2 to illustrate the space-
partition idea. In this example, the irregular 2D space in
Fig. 2(a) is divided into four overlapped regular subspaces
as shown in Fig. 2(b) where each 2D point Ci corresponds
to a regular subspace.

For a regular 2D space represented by (x1 > f1, x2 > f2),
we can compute the maximum f3 value in that space by
invoking DimMax with constraint I = {x1 > f1, x2 > f2}.
As a result, we are able to derive the maximum f3 value in
the irregular 2D space, denoted by f̃∗3 , using such a space-
partition method. Furthermore, we can also identify the reg-
ular 2D subspaces in which the maximum f3 value achieves
f̃∗3 . After obtaining f̃∗3 and the corresponding regular 2D sub-
spaces, the SkylineComm2D algorithm can be used to com-
pute the 2D skyline communities in that regular 2D subspace.
We claim that the computed 2D skyline communities are al-
so the 3D skyline communities. The reasons are as follows.
First, the (f1, f2) values of these 2D skyline communities
cannot be dominated by the previously computed skyline
communities (i.e., H), because they are located on the top
of the staircase-like shape formed by the already computed

x1

(a) A skyline example

0

*

*

*

x1

x2

0

*

*

*

x2

H1

H2

H3

C1

C2

C3

C4

(b) Corner points and subspaces

Figure 2: Illustration of the space-partition idea

Algorithm 6 The Space-Partition Framework

1: Let P be the initial 2D space represented by (x1 > 0, x2 > 0);
2: R ← ∅;
3: while P ̸= ∅ do
4: S ← partition P into a set of overlapped regular subspaces;
5: (f∗

3 ,T) ← identify the largest f3 value (f∗
3) and the corresponding

regular subspaces (T) in S by the DimMax algorithm;
6: H ← compute the set of 2D skyline communities in T by

SkylineComm2D;
7: R ← R∪H;
8: P ← prune the 2D space dominated by H in P ;
9: return R;

3D skyline communities (based on the x1 and x2 dimensions).
Second, since our algorithm computes the 3D skyline com-
munities following the decreasing order of the f3 values, the
f3 values of the undiscovered 3D skyline communities must
be smaller than f̃∗3 . As a result, all the computed 2D skyline
communities are valid 3D skyline communities. Once we ob-
tain a set of new 3D skyline communities, we can iteratively
use the same space-partition method to compute the remain-
ing 3D skyline communities. The general framework of our
space-partition method is shown in Algorithm 6.

To implement our framework, the remaining question is
how can we divide the irregular 2D space into several over-
lapped regular 2D subspaces? Below, we define two impor-
tant concepts called MIN skyline and corner point which will
be used to partition the irregular 2D space.

Definition 4. Let L be a set of d-dimensional points.
The MIN skyline of L, denoted by A, contains all the points
in L that satisfy the following condition. For any point
x = (x1, · · · , xd) ∈ A, there does not exist a point y =
(y1, · · · , yd) ∈ L\A such that yi ≤ xi for all i = 1, · · · , d
and yi < xi for a certain i = 1, · · · , d.

Definition 5. Let R be a set of skyline points in the d-
dimensional space. Let B be the set of all the cross points
in the boundary of the d-dimensional staircase-like shape
formed by the skyline. The corner point set C is the MIN
skyline computed over all the cross points in B.

Reconsider the graph shown in Fig. 2(a). There are seven
cross points in the boundary of the staircase-like shape (in-
cluding three skyline points). We compute the MIN skyline
over all the cross points. Clearly, we can obtain four cor-
ner points which are labeled by ‘•’ in Fig. 2(b). Note that
the coordinates of the corner points can be determined by
the (f1, f2) values of the 3D skyline communities. For ex-
ample, in Fig. 2(b), the coordinates of the corner point C3

can be determined by the 3D skyline communities H2 and
H3, which are (f1(H2), f2(H3)). Based on the corner points,
we can easily divide the irregular 2D space into several over-
lapped regular 2D subspaces as illustrated in Fig. 2(b). Note
that each corner point corresponds to a regular 2D subspace.
For the corner point C3 = (f1(H2), f2(H3)) for example, the
corresponding regular 2D subspace can be represented by
(x1 > f1(H2), x2 > f2(H3)).

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

463

Algorithm 7 New3D(G, I,F)

Input: A multi-valued graph G, constraints I, fixed nodes set F.
Output: Skyline Communities in G.

1: Result R ← ∅; Priority Queue Q ← ∅; C ← {(0, 0)};
2: if DimMax(G, I,F, 3) > 0 then
3: Q.Push((0, 0),DimMax(G, I,F, 3));
4: while Q ̸= ∅ do
5: c3 ← Q.MaxVal(); S′ ← ∅;
6: while Q.MaxVal() = c3 do
7: ((c1, c2), c3)← Q.Pop(); {// c3 is the priority of (c1, c2) ∈ Q}
8: Ĩ ← I∩̄{x1 > c1, x2 > c2};
9: Let u be the node that xu

3 = c3; F̃ ← F ∪ {u};
10: Stmp ← SkylineComm2D(G, Ĩ, F̃);

11: S′ ← S′ ∪ Stmp;

12: for all (c1, c2) ∈ S′ do
13: R ← R∪ {(c1, c2, c3)};
14: for all s′ ∈ S′ do C ← UpdateCornerPoints(C, s′, 2);
15: for all (c1, c2) ∈ C do

16: Ĩ ← I∩̄{x1 > c1, x2 > c2};
17: if (c1, c2) /∈ Q and DimMax(G, Ĩ,F, 3) > 0 then

18: Q.Push((c1, c2),DimMax(G, Ĩ,F, 3));
19: return R;

Algorithm 8 UpdateCornerPoints(C, s′, d)
Input: Corner Points C, Skyline Point s′ = (x′

1, . . . , x
′
d), d.

Output: Updated Corner Points by Adding s′.
1: for i = 1 to d do
2: C′i ← ∅;
3: for all (c = (x1, . . . , xd)) ∈ C s.t. xj < x′

j for 1 ≤ j ≤ d do

4: C ← C \ {c}; replace xi with x′
i in c;

5: C′i ← C
′
i ∪ {c};

6: C′i ← Skyline(C′i, d,MIN); {// computed by classic skyline algorithms}
7: return C ∪ C′i ∪ . . . ∪ C′d;

Implementation details. The detailed implementation of
our algorithm is shown in Algorithm 7. In Algorithm 7, we
use a priority queue Q to maintain all the regular 2D sub-
spaces where the priority of the subspace is the maximum f3
value in that subspace. Specifically, in the priority queue Q,
we use a pair ((c1, c2), c3) to denote a regular 2D subspace,
where (c1, c2) denotes the corner point corresponding to the
regular 2D subspace and c3 is the priority of that subspace
(i.e., the maximal f3 value in that subspace). Initially, the al-
gorithm pushes the initial regular 2D space into Q (lines 1-3).
Then, the algorithm iteratively computes the skyline com-
munities based on the best-first strategy (lines 4-18). Note
that the algorithm can derive skyline communities following
a decreasing order of the f3 values based on the best-first
strategy. In each iteration, the algorithm first finds the max-
imum priority from Q and sets c3 as the maximum priority
(line 5). The algorithm then iteratively pops the regular 2D
space whose priority equals c3 from Q (line 7). For a popped
regular 2D space ((c1, c2), c3), the algorithm refines the con-
straint I by {x1 > c1, x2 > c2} (line 8), and fixes the node u
with xu

3 = c3 (line 9). The algorithm invokes SkylineComm2D
with the refined constraint and fixed node u to compute the
2D skyline communities (line 10). All the computed 2D sky-
line communities are recorded in S ′ (lines 10-11). Since all
the computed 2D skyline communities must be 3D skyline
communities by the best-first strategy, the algorithm adds
all these computed 2D skyline communities into the answer
set R (lines 12-13). The algorithm then updates the corner
points based on the newly-calculated skyline communities in
this iteration (line 14).

To compute the corner points, we devise an incremental
algorithm which is depicted in Algorithm 8. Specifically, for

(a) Before updating (b) After updating

x1
0

*

*

*

x2

*

x1
0

*

*
*

x2

*

Figure 3: Illustration of the corner points updating
each skyline community s′ ∈ S ′, the algorithm incremen-
tally updates the previously-computed corner points set C
(line 14 in Algorithm 7) by invoking Algorithm 8. Clearly, if
the previous-computed corner point c is completely dominat-
ed by the skyline point s′, this corner point must be below
the staircase-like shape formed by the updated skyline after
adding s′. Here we call a point x = (x1, · · · , xd) completely
dominating a point y = (y1, · · · , yd) if and only if xi > yi
for all i = 1, · · · , d. For example, consider the corner points
shown in Fig. 3(a). The red ‘*’ denotes the newly-added sky-
line point s′. In this example, there is one corner point that
is completely dominated by s′. Let C̄ be the set of corner
points completely dominated by s′. We remove all the cor-
ner points in C̄, because these corner points are no longer
the cross points. The completely-dominated corner points in
C̄ can be used to compute the new cross points generated by
adding s′. For each dominated corner point c̄ ∈ C̄, we obtain
a cross point by replacing the xi coordinate of c̄ with that of
s′ and keeping the other coordinates of c̄ unchanged. Clear-
ly, for each completely-dominated corner point, we obtain
d new cross points. After obtaining all the cross points, we
compute the MIN skyline to get the updated corner points.
Reconsider the example shown in Fig. 3. In this example, we
obtain two cross points which are also the corner points as
shown in Fig. 3(b). Algorithm 8 details this procedure. In
Algorithm 8, we compute the MIN skyline in each dimension
(line 7 in Algorithm 8), because the cross points generated
in different dimensions cannot be dominated w.r.t. each oth-
er. Moreover, the remaining corner points in C (the corner
points that are not completely dominated by s′) cannot be
dominated by the newly-computed corner points. Thus, the
algorithm outputs the union of all corner points, forming a
MIN skyline.

After updating C, Algorithm 7 pushes the newly-generated
regular spaces into Q (lines 15-18), and then iteratively com-
putes the skyline communities based on the best-first strat-
egy, until Q = ∅ and the algorithm terminates.

The correctness of Algorithm 7 is analyzed in Theorem 5.

Theorem 5. Algorithm 7 correctly computes all the 3D
skyline communities.

We analyze the complexity of Algorithm 7 in Theorem 6.

Theorem 6. Let s be the number of 3D skyline communi-
ties. The worst-case time and space complexity of Algorith-
m 7 is O(s2(m+ n)) and O(m+ n+ s) respectively.

An improved 3D algorithm. Due to the overlapped space-
partition method, a skyline community may be recomputed
in Algorithm 7 if its (f1, f2) values are located in two regular
2D subspaces with the same priority (see lines 6-11 in Algo-
rithm 7). To avoid such redundant computations, we propose
an improved algorithm to ensure that no skyline community
will be recomputed.

The skyline community clearly cannot be recomputed in
two regular 2D subspaces with different priorities in Algo-
rithm 7, thus we need to avoid redundant computations

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

464

x1

x2

0

C1

C2

x1

x2

0

*
*

*
C1

C2

(a) Two regular spaces

H1

H2

H3

(b) Pruning the space C2

HHHH22
*

*

*

H1

H2

H3

Figure 4: Illustration of the improved algorithm

when the regular 2D subspaces have the same priority. Let
P = {((c11, c12), c3), · · · , ((ct1, ct2), c3)} be the set of regular
2D spaces with the same priority c3. Suppose without loss
of generality that c3 is the current maximum priority in Q
and c11 > · · · > ct1. Then, the improved algorithm iteratively
computes the skyline communities in the regular spaces in
P following the decreasing order of the c1 values. To avoid
redundant computations, the algorithm maintains the max-
imum c2 value denoted by c′2 that it has found so far. Note
that since the c1 values of the regular spaces follow decreas-
ing order, the c2 values must follow increasing order (because
the corner points form a skyline). Then, the algorithm fixes
node u with xu

3 = c3, and invokes the SkylineComm2D algo-
rithm with constraint (x1 > ci1, x2 > c′2) and fixed node u to
compute the 2D skyline communities. For all the computed
2D skyline communities Stmp, the algorithm finds the max-
imum c2 value in Stmp and updates c′2 if it is larger than
c′2. Based on this, the algorithm can prune the dominated
space in the subsequent regular 2D spaces, which thus avoids
recomputing the skyline communities.

For ease of understanding, we use an example to illus-
trate the idea of our improved algorithm. Consider the ex-
ample shown in Fig. 4. Suppose that we have two regular
spaces that have the same priority as shown in Fig. 4(a). Let
C1 = (c11, c

2
1) and C2 = (c12, c

2
2) be the corner points of these

two regular spaces respectively. For convenience, we refer to
these two regular spaces as space C1 and space C2. Following
the decreasing order of c1 value, the algorithm first pops C1

from the priority queue Q, and then computes the skyline
communities in the space C1. In this example, three skyline
communities Stmp = {H1, H2, H3} have been obtained in
the regular space C1. The algorithm updates c′2 by f2(H1),
because f2(H1) is the largest value among all the f2 values
of the skyline communities. In the second iteration, the algo-
rithm pops C2 from Q. Since c22 < c′2, the algorithm invokes
SkylineComm2D with constraint (x1 > c12, x2 > c′2) to com-
pute the skyline communities in the regular space C2. Due
to the constraint x2 > c′2, the shading area in the regular
space C2 in Fig. 4(b) is pruned. As a result, the skyline com-
munities H1 and H2 will not be recomputed in the second
iteration. The detailed description of our algorithm is shown
in Algorithm 9.

In lines 6-12 of Algorithm 9, since c′2 does not decrease,
none of the computed skyline communities are recomputed
in the subsequent iterations. On the other hand, a skyline
community also cannot be recomputed in spaces with dif-
ferent priorities (i.e., different c3 values), thus each skyline
community is only calculated once by Algorithm 9. We can
apply a similar argument used in Theorem 5 to prove the
correctness of Algorithm 9. Below, we analyze the time and
space complexity of the algorithm.

Theorem 7. The time and space complexity of Algorith-
m 9 is O(s(m+ n)) and O(m+ n+ s) respectively, where s
is the total number of 3D skyline communities.

Algorithm 9 ImprovedNew3D(G, I,F)

Input: A multi-valued graph G, constraints I, fixed nodes set F.
Output: Skyline Communities in G.

1: Result R ← ∅; Priority Queue Q ← ∅; C ← {(0, 0)};
2: if DimMax(G, I,F, 3) > 0 then
3: Q.Push((0, 0),DimMax(G,I,F, 3));
4: while Q ̸= ∅ do
5: c3 ← Q.MaxVal(); c′2 ← 0; S′ ← ∅;
6: while Q.MaxVal() = c3 do
7: ((c1, c2), c3)← Q.Pop();

{// following the decreasing order of the c1 value}
8: c′2 ← max(c′2, c2); Ĩ ← I∩̄{x1 > c1, x2 > c′2};
9: Let u be the node that xu

3 = c3; F̃ ← F ∪ {u};
10: Stmp ← SkylineComm2D(G, Ĩ, F̃);

11: c′2 ← max(c′2,max{x′
2|(x

′
1, x

′
2) ∈ Stmp});

12: S′ ← S′ ∪ Stmp;

13: for all (c1, c2) ∈ S′ do
14: R ← R∪ {(c1, c2, c3)};
15: for all s′ ∈ S′ do C ← UpdateCornerPoints(C, s′, 2);
16: for all (c1, c2) ∈ C do

17: Ĩ ← I∩̄{x1 > c1, x2 > c2};
18: if (c1, c2) /∈ Q and DimMax(G, Ĩ,F, 3) > 0 then

19: Q.Push((c1, c2),DimMax(G, Ĩ,F, 3));
20: return R;

Algorithm 10 NewHighD(G, I,F , d)

Input: A multi-valued graph G, constraints I, fixed nodes set F, d ≥ 3.
Output: Skyline Communities in G.

1: if d = 3 then return ImprovedNew3D(G, I,F);
2: Result R ← ∅; Priority Queue Q ← ∅; C ← {(0, . . . , 0)d−1};
3: if DimMax(G, I,F, d) > 0 then
4: Q.Push((0, . . . , 0)d−1,DimMax(G, I,F, d));

5: while Q ̸= ∅ do
6: cd ← Q.MaxVal(); S′ ← ∅;
7: while Q.MaxVal() = cd do
8: ((c1, . . . , cd−1), cd)← Q.Pop();

9: Ĩ ← I∩̄{x1 > c1, . . . , xd−1 > cd−1};
10: Let u be the node that xu

d = cd; F̃ ← F ∪ {u};
11: Stmp ← NewHighD(G, Ĩ, F̃, d− 1);

12: S′ ← S′ ∪ Stmp;

13: for all (c1, . . . , cd−1) ∈ S′ do

14: R ← R∪ {(c1, . . . , cd−1, cd)};
15: for all s′ ∈ S′ do C ← UpdateCornerPoints(C, s′, d− 1);
16: for all (c1, . . . , cd−1) ∈ C do

17: Ĩ ← I∩̄{x1 > c1, . . . , xd−1 > cd−1};
18: if (c1, . . . , cd−1) /∈ Q and DimMax(G, Ĩ,F, d) > 0 then

19: Q.Push((c1, . . . , cd−1),DimMax(G, Ĩ,F, d));

20: return R;

Note that the worst-case time complexity of Algorith-
m 9 can be dominated by O(n2(m + n)), because the to-
tal number of 3D skyline communities is bounded by n2.
Therefore, even in the worst case, Algorithm 9 is also better
than Algorithm 4. In our experiments, we will show that the
ImprovedNew3D algorithm is at least one order of magnitude
faster than the Basic3D algorithm, and uses much less mem-
ory. Furthermore, since the ImprovedNew3D algorithm out-
puts the skyline communities progressively, it is very useful
when the application only needs part of the skyline commu-
nities. However, the Basic3D algorithm may generate invalid
results, thus it is not a progressive algorithm.

5.2 Handling the d > 3 case
We extend Algorithm 7 to handle the d > 3 case in Algorith-
m 10. The general procedure of Algorithm 10 is very simi-
lar to that of Algorithm 7. The main difference is that the
algorithm recursively invokes itself with a parameter d − 1
to compute all the (d− 1)-dimensional skyline communities
(line 11). In addition, the pruning idea used in Algorithm 9
cannot be applied to the d > 3 case. The reason is as follows.
For the d > 3 case, the regular space is a (d−1)-dimensional

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

465

Network n m dmax kmax

Slashdot 79K 0.5M 2507 53
Delicious 536K 1.4M 3216 33
Lastfm 1.2M 4.5M 5150 70
Flixster 2.5M 7.9M 1474 68

Table 1: Datasets (K = 103 and M = 106)

space. For each regular (d − 1)-dimensional space (d > 3),
we cannot use a similar method to that illustrated in Fig. 4
to prune the dominated (d − 1)-dimensional space. This is
because if we prune the dominated (d−1)-dimensional space,
the resulting space is no longer a regular (d−1)-dimensional
space when d > 3. The correctness analysis of Algorithm 10
is also very similar to the analysis of Algorithm 7, thus we
omit the details for brevity. Below, we analyze the time and
space complexity of the algorithm.

Theorem 8. The worst-case time and space complexity of
Algorithm 10 is O((d− 1)!sd−2(m+ n)) and O(m+ n+ ds)
respectively, where s denotes the number of d-dimensional
skyline communities.

Note that the time complexity analysis in Theorem 8 is
the worst-case complexity. In practice, the time cost of our
algorithm is much lower than the worst-case complexity, be-
cause our algorithm substantially prunes the dominated s-
pace. Moreover, s and d are typically not very large in prac-
tice (e.g., s ≤ 105 and d ≤ 5), thus our algorithm can be very
efficient. In the experiments, we will show that our algorith-
m is at least one order of magnitude faster than the basic
algorithm, and it can also be scaled to handle large graph-
s. Compared to Algorithm 5, Algorithm 10 is a progressive
algorithm which is very useful for applications that require
only part of the skyline communities.

6 EXPERIMENTS
We conduct comprehensive experiments to evaluate the pro-
posed model and algorithms. For the d = 2 case, we im-
plement the SkylineComm2D algorithm (Algorithm 2). For
the d ≥ 3 case, we implement two algorithms: Basic (Algo-
rithm 5) and New (Algorithm 10). Note that in the Basic
algorithm, we have integrated the pruning rule proposed in
Section 4.3. For convenience, when d = 2, both Basic and
New are the same as the SkylineComm2D algorithm. Since
all the existing community search algorithms cannot be used
for skyline community search, we use the Basic algorithm as
the baseline algorithm for performance studies. All the al-
gorithms are implemented in C++, and all experiments are
conducted on a PC with two 2.4GHz Intel Xeon CPUs and
64GB main memory running Ubuntu 14.04.5 (64-bit).

Datasets. We use four real-world networks in our exper-
iments. The statistics of the datasets are summarized in
Table 1. In Table 1, dmax and kmax denote the maximal
degree and the maximal core number of the network, re-
spectively. All four datasets are social networks, downloaded
from (http://networkrepository.com/). Note that the origi-
nal datasets do not contain numerical attributes. To evalu-
ate the performance of our algorithms, we apply a widely-
used method in the skyline processing literature [4] to gen-
erate the numerical attributes for our datasets. We use the
same method proposed in [4] to generate three different type-
s of numerical attributes in each network: 1) independence,
2) correlation, and 3) anti-correlation. Independence implies
that the attribute values are generated independently using
a uniform distribution. Correlation means that if a node is
good in one dimension (attribute), then it is also good in the

other dimensions. Anti-correlation indicates that if a node is
good in one dimension, then it is bad in one or all of the other
dimensions. Intuitively, the number of skyline communities
in the network with correlated attributes should be much
smaller than the number in the same network with inde-
pendent attributes or anti-correlated attributes, and among
them, the number of skyline communities in the networks
with anti-correlated attributes is maximal. Due to the space
limit, we mainly report the results obtained from the net-
works with independent attributes, and the results for the
other types of attributed networks are reported in Appendix
A.2.

6.1 Performance studies for d = 2

Exp-1: Efficiency of SkylineComm2D. We vary the core
number k from 5 to 25, and evaluate the efficiency of the
SkylineComm2D algorithm. The results in the networks with
independent attributes are shown in Figs. 5. As can be seen,
the running time of SkylineComm2D decreases with increas-
ing k. This is because the graph size after pruning decrease
with increasing k. For example, in Fig. 5(d), when k = 15
SkylineComm2D takes 2.8 seconds to output all the skyline
communities, whereas it only uses 2.15 seconds if k = 25.
In all the datasets, SkylineComm2D takes less than 4 sec-
onds to output all the results. These results indicate that
SkylineComm2D is very efficient in practice, which confirm
the complexity analysis of SkylineComm2D in Section 3.

Exp-2: Memory overhead of SkylineComm2D. We show
the memory cost of SkylineComm2D with varying k in the
independent attributed networks. Similar results can be ob-
served in the other types of attributed networks. Fig. 6 de-
picts our results. From Fig. 6, we can see that the memory
cost of SkylineComm2D decreases with increasing k in all the
datasets. This is because the graph size decreases with in-
creasing k. Also, we can see that the memory overhead of
our algorithm is at most 3 times the graph size, indicating
that SkylineComm2D is memory-efficient. These results are
consistent with the space complexity of SkylineComm2D.

6.2 Performance studies for d ≥ 3

Exp-3: Efficiency (d = 3). For d = 3, the efficiency test-
ings of Basic and New in the networks with independent at-
tributes are reported in Fig. 7. Also, for the other types of
attributed networks, the results can be found in Appendix
A.2. As can be seen, if k ≥ 15, the running time of both Basic
and New decreases with increasing k. However, if k < 15, the
running time slightly increases when k increases. In all the
datasets, New is at least one order of magnitude faster than
Basic. For instance, in Fig. 7(a), when k = 20, New takes 5.3
seconds, whereas Basic takes 100.6 seconds. Also, as shown
in Figs. 7(c) and (d), Basic is intractable in the Lastfm and
Flixster datasets (‘Inf’ means that the algorithm cannot ter-
minate in 50,000 seconds). New, however, still runs very fast
in these datasets. For example, in Fig. 7(d), New only takes
200 seconds to find all 3D skyline communities in Flixster.
These results confirm our theoretical analysis in Sections 4
and 5.

Exp-4: Memory overhead. For d = 3, the memory cost
of Basic and New is shown in Fig. 8 in the networks with in-
dependent attributes. Similar results can also be observed in
different types of attributed networks and also for the other
d values. As can be seen, New consumes much less memory
than Basic in all the datasets. This is because Basic needs to
maintain a large number of invalid skyline communities. Gen-
erally, the memory size of both Basic and New decreases with

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

466

5 10 15 20 25
k

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ti
m

e(
Se

c)
SkylineComm2D

(a) Slashdot

5 10 15 20 25
k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ti
m

e(
Se

c)

SkylineComm2D

(b) Delicious

5 10 15 20 25
k

1

1.5

2

2.5

3

3.5

4

Ti
m

e(
Se

c)

SkylineComm2D

(c) Lastfm

5 10 15 20 25
k

2

2.25

2.5

2.75

3

3.25

3.5

Ti
m

e(
Se

c)

SkylineComm2D

(d) Flixster

Figure 5: Efficiency of SkylineComm2D in networks with independent attributes (vary k)

5 10 15 20 25
k

5

10

15

20

25

Si
ze

(M
B)

SkylineComm2D
Graph Size

(a) Slashdot

5 10 15 20 25
k

20

30

40

50

60

70

80

90

Si
ze

(M
B)

SkylineComm2D
Graph Size

(b) Delicious

5 10 15 20 25
k

50

100

150

200

250

300

Si
ze

(M
B)

SkylineComm2D
Graph Size

(c) Lastfm

5 10 15 20 25
k

150

200

250

300

350

400

Si
ze

(M
B)

SkylineComm2D
Graph Size

(d) Flixster

Figure 6: Memory overhead of SkylineComm2D in networks with independent attributes (vary k)

5 10 15 20 25
k

100

101

102

103

Ti
m

e(
Se

c)

Basic
New

(a) Slashdot

5 10 15 20 25
k

10-1

100

101

102

103

104

Ti
m

e(
Se

c)

Basic
New

(b) Delicious

5 10 15 20 25
k

102

103

104

Inf

Ti
m

e(
Se

c)

Basic
New

(c) Lastfm

5 10 15 20 25
k

102

103

104

Inf

Ti
m

e(
Se

c)

Basic
New

(d) Flixster

Figure 7: Efficiency of Basic and New in networks with independent attributes (vary k, d = 3)

5 10 15 20 25
k

10

20

30

40

50

60

Si
ze

(M
B)

Basic
New
Graph Size

(a) Slashdot

5 10 15 20 25
k

0

50

100

150

200

250

300

350

Si
ze

(M
B)

Basic
New
Graph Size

(b) Delicious

5 10 15 20 25
k

100

200

300

400

500

600

700

800

Si
ze

(M
B)

Basic
New
Graph Size

(c) Lastfm

5 10 15 20 25
k

200

400

600

800

1000

1200

1400

1600

Si
ze

(M
B)

Basic
New
Graph Size

(d) Flixster

Figure 8: Memory overhead of Basic and New in networks with independent attributes (vary k, d = 3)

2 3 4 5
d

10-2

10-1

100

101

102

103

104
Inf

Ti
m

e(
Se

c)

Basic
New

(a) Delicious (Independence)

2 3 4 5
d

100

101

102

103

104

Inf

Ti
m

e(
Se

c)

Basic
New

(b) Flixster (Independence)

Figure 9: Efficiency of Basic and New (Vary d, k = 15)

increasing k. When k = 25, the space cost of New is close to
that of the graph size, as the algorithm significantly reduces
the graph size when k is large. These results demonstrate
that New is memory-efficient, which are consistent with the
space complexity analysis in Section 5.

Exp-5: Efficiency (Vary d). We evaluate the efficiency
of Basic and New by varying d from 2 to 5. Note that when
d = 2, we refer to both Basic and New as the SkylineComm2D
algorithm. The results in the Delicious and Flixster networks
are reported in Fig. 9, and similar results can be observed in
the other datasets. As desired, the running time of both Basic
and New increases when d increases, and New is at least one
order of magnitude faster than Basic when d ≥ 3. Also, we
can see that Basic is costly, and it is intractable when d ≥ 4
in the Flixster dataset. For the New algorithm, the running

time typically increases by 10 times when d increases by 1,
because the number of skyline communities increases quickly
when d increases by 1. In practice, d is often very small (e.g.,
d ≤ 5). This is because the nodes in most real-world network-
s do not have too many numeric attributes. For example, in
the Aminer scientific network (http://aminer.org/), each n-
ode has 7 numeric attributes. To the best of our knowledge,
Aminer is the publicly available network that has the largest
number of numeric attributes. On the other hand, in the sky-
line community model, d is equal to the number of selected
numeric attributes which is typically much smaller than the
total number of numeric attributes. Therefore, in this sense,
our New algorithm is tractable for handling most real-world
applications.

6.3 Case study
We use the Aminer datasets for case study. The Aminer
dataset is a scientific collaboration network collected from
(aminer.org) which contains the authors in database, data
mining, machine learning, and information retrieval areas.
The dataset comprises 5,411 nodes and 17,477 edges. We
crawl four numeric attributes for each author: h-index, the
number of papers, activity, and diversity. Here h-index mea-
sures the academic influence of an author, activity measures

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

467

(a) InfluCore (h-index) (b) InfluCore (sim.) (c) AvgCore

(d) SkyCore (e) SkyCore (f) InfluCore (sim.)

(g) AvgCore (h) SkyCore (i) SkyCore

Figure 10: Comparison of different methods in the
Aminer dataset (k = 5); Figs. (a-e) show the results
of the query “Prof. Dan Suciu”, and Figs. (a, f-i)
depict the results of the query “Prof. Elisa Bertino”.

whether an author is active or not in recent years, and di-
versity measures the diversity of the author’s research top-
ics. We compare our approach (denoted by SkyCore) with
three baseline methods: InfluCore, AvgCore, and MergeCore.
InfluCore denotes the influential community search algorith-
m [15] which only considers one numeric attribute. AvgCore
first takes the average value over the d numeric attributes for
each node, and then invokes InfluCore to compute the com-
munities based on the average values. MergeCore first finds
the top-1 influential communities on each numeric attribute,
and then merges the d resulting communities.

Exp-6: Finding similar and influential communities.
In this case study, we aim to find the influential communi-
ties such that their members are similar to a given query
node u based on the Jaccard similarity. For each node in
Aminer, we use the h-index to measure the influence. We
compute the Jaccard similarity between u and the other n-
odes in the network (for a node v, the Jaccard similarity
between u and v is |N(u) ∩ N(v)|/|N(u) ∪ N(v)|). As a re-
sult, we can obtain two numeric attributes for each node
(the h-index and the Jaccard similarity). For a fair compari-
son, we normalize each numeric attribute into the range [0, 1]
in all case studies. Based on these two normalized numeric
attributes, we apply the above four different methods with
parameter k = 5 to compute the communities. Figs. 10(a-e)
report the results of professor Dan Suciu’s communities, and
Figs. 10(a, f-i) show the results of professor Elisa Bertino’s
communities. In Figs. 10(a-b, f), We can see that the results
obtained by InfluCore only capture one attribute. For exam-
ple, in Fig. 10(a), the community mainly contains the influen-
tial authors in the database community which are not neces-
sarily similar to professor Dan Suciu (by Jaccard similarity).
On the other hand, in Fig. 10(b), the community compris-
es the authors that are similar to professor Dan Suciu, but
their h-index values are not necessarily very high. Also, we
can observe that there is no overlap among the communities
(a), (b), and (f), thus MergeCore cannot obtain a connected
community. In effect, we find that MergeCore fails to find a
connected community in most of the case studies. This is be-
cause the resulting communities on different attributes are

typically uncorrelated, and therefore the merged community
is often disconnected. From Figs. 10(c) and (g), the result-
ing communities obtained by AvgCore also cannot capture
both influence and similarity. For example, in Fig. 10(g),
the community includes many high influential researchers,
but they are dissimilar to professor Elisa Bertino. Moreover,
the community also does not contain professor Elisa Berti-
no. As shown in Figs. 10(d-e, h-i), our approach (SkyCore)
performs much better than all the baseline methods. For ex-
ample, in Fig. 10(d), the community comprises many high
influential researchers who are also very similar to profes-
sor Dan Suciu based on the Jaccard similarity. These results
indicate that the proposed skyline community approach can
indeed capture both influence and similarity of a community.
Thus, we believe that our approach is very useful for such a
personalized influential community search application.

7 RELATED WORK
Community model and search. Community in a graph is
typically represented by a cohesive subgraph. A large number
of community models have been proposed, such as maximal
clique [6], k -core [10, 16, 20], k -truss [8, 12, 13, 23], maximal
k-edge connected subgraph [1, 5, 25], quasi-clique [9], locally
densest subgraph [19], query-biased density [24], and so on.
All these community models only consider the graph struc-
tural information and ignore the attributes (numerical and
textual attributes) associated with the nodes. Recently, Fang
et al. [11] proposed an attributed community model that is
tailored to the graphs with textual attributes. Li et al. [15]
introduced an influential community model, which takes the
node’s influence into consideration. However, their model on-
ly considers one numerical attribute (i.e., the influence), thus
the techniques proposed in [15] cannot be used for our prob-
lem when d > 1. Our skyline community model is the first
community model that can capture d-dimensional numerical
attributes, and our work is also the first to introduce skyline
for community modeling.

Another related line of work is on community search,
where the goal is to find a cohesive subgraph that includes
the query nodes. Sozio et al. [22] studied the community
search problem in social networks based on the k-core mod-
el. Huang et al. [12] introduced a k-truss community model,
and proposed several efficient k-truss community search al-
gorithms. Cui et al. [9] investigated an overlap community
search problem based on the quasi-clique model. More recent-
ly, Huang et al. [13] proposed the closest truss community
model to find the k-truss community with small diameter. In
this paper, we study the skyline community search problem,
and the proposed techniques are dramatically different from
all the previous community search algorithms.

8 CONCLUSION
In this paper, we propose a novel skyline community model
to detect interesting communities in a multi-valued network,
where each node is associated with d numerical attributes.
The resulting communities identified by our model cannot be
dominated by the other communities in the d-dimensional at-
tribute space. We develop a basic and a novel space-partition
algorithm to find all the skyline communities efficiently. The
worst-case time complexity of the space-partition algorithm
relies mainly on the number of skyline communities, thus it
is very efficient if the size of the answer is not very large. Ex-
tensive experiments in both real-world and synthetic multi-
valued networks demonstrate the efficiency, scalability and
effectiveness of our solutions.

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

468

REFERENCES
[1] T. Akiba, Y. Iwata, and Y. Yoshida. Linear-time enumeration of

maximal k-edge-connected subgraphs in large networks by ran-
dom contraction. In CIKM, pages 909–918, 2013.

[2] A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das. Dis-
covering the skyline of web databases. PVLDB, 9(7):600–611,
2016.

[3] V. Batagelj and M. Zaversnik. An O(m) algorithm for cores de-
composition of networks. CoRR, cs.DS/0310049, 2003.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator.
In ICDE, pages 421–430, 2001.

[5] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang. Ef-
ficiently computing k-edge connected components via graph de-
composition. In SIGMOD, pages 205–216, 2013.

[6] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding
maximal cliques in massive networks. ACM Trans. Database
Syst., 36(4):21:1–21:34, 2011.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In ICDE, pages 717–719, 2003.

[8] J. Cohen. Trusses: Cohesive subgraphs for social network analysis.
Technical report, National Security Agency, 2005.

[9] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online search
of overlapping communities. In SIGMOD, pages 277–288, 2013.

[10] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of com-
munities in large graphs. In SIGMOD, pages 991–1002, 2014.

[11] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community
search for large attributed graphs. PVLDB, 9(12):1233–1244,
2016.

[12] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-
truss community in large and dynamic graphs. SIGMOD, pages
1311–1322, 2014.

[13] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng. Approx-
imate closest community search in networks. PVLDB, 9(4):276–
287, 2015.

[14] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. J. ACM, 22(4):469–476, 1975.

[15] R. Li, L. Qin, J. X. Yu, and R. Mao. Influential community search
in large networks. PVLDB, 8(5):509–520, 2015.

[16] R. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large
dynamic graphs. IEEE Trans. Knowl. Data Eng., 26(10):2453–
2465, 2014.

[17] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD, pages
467–478, 2003.

[18] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on
uncertain data. In VLDB, pages 15–26, 2007.

[19] L. Qin, R. Li, L. Chang, and C. Zhang. Locally densest subgraph
discovery. In KDD, pages 965–974, 2015.

[20] S. B. Seidman. Network structure and minimum degree. Social
Networks, 5(3):269–287, 1983.

[21] C. Sheng and Y. Tao. On finding skylines in external memory.
In PODS, pages 107–116, 2011.

[22] M. Sozio and A. Gionis. The community-search problem and how
to plan a successful cocktail party. In KDD, pages 939–948, 2010.

[23] J. Wang and J. Cheng. Truss decomposition in massive networks.
PVLDB, 5(9):812–823, 2012.

[24] Y. Wu, R. Jin, J. Li, and X. Zhang. Robust local communi-
ty detection: On free rider effect and its elimination. PVLDB,
8(7):798–809, 2015.

[25] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li. Find-
ing maximal k-edge-connected subgraphs from a large graph. In
EDBT, pages 480–491, 2012.

Acknowledgement. Rong-Hua Li was partially supported by
the NSFC Grants (61772346 and 61732003), and Beijing Institute
of Technology Research Fund Program for Young Scholars. Lu Qin
was supported by ARC DP 160101513. Jeffrey Xu Yu was support-
ed by the Research Grants Council of the Hong Kong SAR, China
No. 14221716. Xiaokui Xiao was partially supported by MOE, Sin-
gapore under grant MOE2015-T2-2-069, and by NUS, Singapore
under an SUG. Zibin Zheng was partially supported by the Pro-
gram for Guangdong Introducing Innovative and Entrepreneurial
Teams (2016ZT06D211), and the Pearl River S&T Nova Program
of Guangzhou (201710010046). Zibin Zheng is the corresponding
author of this paper.

A APPENDIX
A.1 Missing proofs

Lemma 1. Let H1 with values (f1(H1), f2(H1)) be the skyline
community that has the maximal f2 value over all the skyline com-
munities. Then, the nodes in G whose x1 values are no larger than
f1(H1) cannot be contained in the other skyline communities.

Proof. We prove this lemma by contradiction. Suppose that
there is a skyline community H (H ̸= H1) that contains a node u
with xu

1 ≤ f1(H1). H can be dominated by H1 because f1(H) ≤
f1(H1) and f2(H) < f2(H1), which is a contradiction. �

Theorem 1. Algorithm 2 correctly computes all the 2D skyline
communities.

Proof. It is easy to show that the communities returned by
Algorithm 2 must be skyline communities. To prove the theorem,
we need to show that all the skyline communities have been com-
puted by Algorithm 2. Suppose to the contrary that there is a
skyline community H with values (f1(H), f2(H)) that cannot be
obtained by Algorithm 2. We assume that Algorithm 2 iteratively
outputs s skyline communities which are H1, H2, · · · , Hs. Clearly,
by Algorithm 2, we have f2(H1) > f2(H2) > · · · > f2(Hs). Also,
by definition, we have f1(H1) < f1(H2) < · · · < f1(Hs). Since H
is a skyline community, it is a k-ĉore and it must be contained in
the maximal k-core of graph G. By our algorithm, f2(H1) is the
maximal f2 value over all the k-ĉores in G, thus f2(H) < f2(H1).
On the other hand, Hs is the last skyline community comput-
ed by Algorithm 2, thus invoking Algorithm 1 with constraint
x1 > f1(Hs) (lines 7-8 in Algorithm 2) results in f2 = 0. That is
to say, the graph G cannot contain a k-core with f1 value larger
than f1(Hs). Therefore, we conclude that f1(H) < f1(Hs). Since
H is a skyline community, we have f1(H1) < f1(H) < f1(Hs) and
f2(H1) > f2(H) > f2(Hs).

Furthermore, we claim that f1(H) and f2(H) must satisfy that
f1(Hi) < f1(H) < f1(Hi+1) and f2(Hi) > f2(H) > f2(Hi+1)
for a certain Hi (i = 1, · · · , s − 1). We can prove this statemen-
t by a contradiction. Since f1(H1) < f1(H) < f1(Hs), there
exists a skyline community Hi for i = 1, · · · , s − 1 such that
f1(Hi) < f1(H) < f1(Hi+1). Suppose to the contrary that
f2(Hi) > f2(H) > f2(Hi+1) does not hold. Since f2(H1) >
f2(H) > f2(Hs), there exists a skyline community Hj for j =
1, · · · , s − 1 and j ̸= i such that f2(Hj) > f2(H) > f2(Hj+1).
Assume without loss of generality that i < j. We then have
f1(Hi) < f1(H) < f1(Hj) and f2(Hj) > f2(H). As a result,
Hj dominates H, which is a contradiction.

After computing Hi (line 6 in Algorithm 2), the algorith-
m invokes Algorithm 1 to calculate f2(Hi+1) with constraint
x1 > f1(Hi) (lines 7-8 in Algorithm 2). By Algorithm 1, we know
that f2(Hi+1) is the maximal f2 value over all k-ĉores whose f1
values are larger than f1(Hi). Since H is a skyline community
with f1(H) > f1(Hi), we have f2(H) < f2(Hi+1), which con-
tradicts f2(Hi) > f2(H) > f2(Hi+1). We can therefore conclude
that Algorithm 2 outputs all skyline communities. �

Theorem 2. Let s be the number of skyline communities in G.
Then, the worst case time and space complexity of Algorithm 2
are O(s(m+ n)) and O(m+ n+ s) respectively.

Proof. First, the time complexity of Algorithm 1 is O(m+n),
because we only need to scan the graph once. Since Algorithm 2
invokes Algorithm 1 s times, the time complexity of Algorithm 2
is O(s(m+n)). For the space complexity, the algorithm only needs
to store the graph and several auxiliary arrays (e.g., visit) which
consume O(m+n) space, and also the algorithm needs to maintain
the results which use O(s) space. Therefore, the space complexity
of Algorithm 2 is O(m+ n+ s), which is linear to the graph size
and answer size. �

Lemma 2. For each dimension xi (i = 1, · · · , d), the fi values
of all the skyline communities are contained in the set Ti which
is computed by Algorithm 3.

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

469

Proof. We prove the lemma by contradiction. Suppose to the
contrary that there is a skyline community H in which fi(H) /∈ Ti.
Recall that Ti denotes the set of the values of all the influential
communities that are computed based on the xi dimension (see
Algorithm 3). We assume without loss of generality that there are
t different elements in Ti and Ti = {f1

i , · · · , f t
i } with f1

i <, · · · , <
f t
i . By definition, it is easy to show that f1

i < fi(H) < f t
i . Thus,

there exists j (1 ≤ j ≤ t − 1) such that fj
i < fi(H) < fj+1

i .
Let Gj be the graph that is obtained by removing all the nodes

whose xd values are smaller than fj
i , and Hj be the maximal k-

core of Gj . Let u ∈ Hj be the node with xu
i = fj

i (i.e., u ∈ Hj is
the smallest-value node on the xi dimension). Since H is a k-core

with fi(H) > fj
i , H must be contained in Hj and also H cannot

contain node u. On the other hand, since fi(H) < fj+1
i , H cannot

be contained in Hj+1. By definition, if we remove u from Hj and
then compute the maximal k-core, we can obtain Hj+1. Since H
is a k-core which does not contain u, it must be contained in Hj+1,
which is a contradiction. �

Theorem 3. Algorithm 4 correctly finds all the 3D skyline com-
munities, and the worst-case time and space complexity of Algo-
rithm 4 is O(n2(m+ n)) and O(n2) respectively.

Proof. First, we prove the correctness of Algorithm 4. By Lem-
ma 2, F3 (F3 = T3) contains all the possible f3 values that the 3D
skyline communities may have. For each f3 ∈ F3, the algorithm
calculates all the 2D skyline communities whose values in the x3
dimension equal f3. As a result, all the 3D skyline communities
must be contained in the union of the sets of all those 2D skyline
communities. By computing the skyline in the union of these sets,
the algorithm can obtain all the 3D skyline communities.

Second, we analyze the complexity of Algorithm 4. For the time
complexity, the algorithm takes O(m + n) time to compute F3.
Then, for each f3 ∈ F3, the algorithm invokes a SkylineComm2D
algorithm which takes at most O(n(m+ n)) time. The total time
cost taken in the ‘for ’ loop (line 3) is therefore O(n2(m + n)) in
the worst case. Since the size of T is bounded by n, the total size
of R in line 7 is bounded by O(n2). Finally, the algorithm calls
a traditional skyline algorithm to compute the final results which
consumes O(n2 logn) [4, 14], because there are at most O(n2) 3D
points recorded in R. The total time complexity is O(n2(m+n)).
For the space complexity, we can easily show that the algorithm
uses O(m+ n+ n2) space, which is dominated by O(n2). �

Theorem 4. For d ≥ 3, the worst-case time and space com-
plexity of Algorithm 5 is O(nd−1(m+ n+ (d− 1) logd−3 n)) and
O(nd−1) respectively.

Proof. We start by analyzing the time complexity. It is easy to
show that the total number of skyline points in the d-dimensional
discrete space is bounded by O(nd−1) for d ≥ 2. Here the discrete
space means that the skyline points in each dimension can only
take n discrete values. Let T (d) be the worst-case time complexity

of Algorithm 5. Then, T (d) = n× T (d− 1) + nd−1 logd−3(nd−1),

where nd−1 logd−3(nd−1) denotes the time cost of computing
the final skyline communities by using the traditional skyline
algorithm [14] (for d ≥ 3). Then, we can obtain that T (d) =

O(nd−1(m+n+(d− 1) logd−3 n)). The space complexity is dom-
inated by the total number of all the (d− 1)-dimensional skyline
communities that are recorded in R, which is O(nd−1). �

Theorem 5. Algorithm 7 correctly computes all the 3D skyline
communities.

Proof. First, we prove that the computed skyline communi-
ties are correct 3D skyline communities. Let Ri be the set of
skyline communities computed in the i-th iteration. By the best-
first strategy, the algorithm computes the 3D skyline communities
following the decreasing order of the f3 values. Hence, in the i-
th iteration, the skyline communities in Ri cannot be dominated

by the undiscovered skyline communities (because the f3 values
of the skyline communities in Ri must be larger than those of
the undiscovered skyline communities). On the other hand, the
skyline communities in Ri cannot be dominated by the skyline
communities in Rj with j < i, because the previously-calculated
skyline communities cannot dominate the skyline communities in
Ri in terms of the first two dimensions. Second, since the pro-
posed space-partition algorithm does not miss any subspace, all
the skyline communities must be discovered by our algorithm. �

Theorem 6. Let s be the number of 3D skyline communi-
ties. The worst-case time and space complexity of Algorithm 7
is O(s2(m+ n)) and O(m+ n+ s) respectively.

Proof. First, we analyze the time complexity of the algorith-
m. Since each skyline point generates at most two new corner
points in the 2D space by Algorithm 8, the total number of cor-
ner points generated by our algorithm is bounded by O(s). For
each corner point, the algorithm invokes the SkylineComm2D algo-
rithm at most once, which takes at most O(s(m+n)) time. Thus,
the total cost taken in lines 6-11 is bounded by O(s2(m+ n)). In
addition, for each skyline point, the time cost to update the cor-
ner points in line 14 is O(s). Thus, the total cost taken in line 14
can be bounded by O(s2), which is dominated by O(s2(m + n)).
It is also easy to show that the total cost taken in lines 15-18 is
bounded by O(s2(m+n)). It can thus be seen that the worst-case
time complexity of Algorithm 7 is O(s2(m + n)). For the space
complexity, we need to maintain the graph and the priority Q,
which consume O(m+ n+ s) space in total. �

Theorem 7. The time and space complexity of Algorithm 9 is
O(s(m + n)) and O(m + n + s) respectively, where s is the total
number of 3D skyline communities.

Proof. First, we analyze the time complexity of the algorith-
m. Since no skyline community is recomputed by Algorithm 9,
the total time cost of computing all the skyline communities in
line 10 is O(s(m+ n)). Similar to Algorithm 7, the total number
of corner points generated by the algorithm is O(s), thus the total
time cost taken in lines 16-19 is bounded by O(s(m+n)). Finally,
we analyze the total time cost of computing the corner points in
line 15. A straightforward implementation of Algorithm 8 results
in O(s) time complexity. As a result, the total cost of maintain-
ing the corner points set is O(s2) in the worst case. Recall that
Algorithm 9 needs to dynamically maintain the corner points set
C in each iteration. Since all the corner points in C form a skyline,
it is easy to develop a tree-like structure to maintain all the cor-
ner points such that finding a completely-dominated corner point
can be done in O(log s) and updating the tree structure can also
be done in O(log s). Since there are O(s) corner points in total,
the total maintenance cost is O(s log s) time. Additionally, in the
3D case, the corner points are 2D points, thus the total cost of
computing the MIN skyline in each dimension (line 7 in Algorith-
m 8) is O(s) time. In the 3D case, s is bounded by n2, thus the
time cost of maintaining the corner points set C is also dominated
by O(s(m + n)). Ultimately, the time complexity of Algorithm 9
is O(s(m + n)). Second, we can easily show that the space com-
plexity of Algorithm 9 is O(m + n + s), which is the same as
Algorithm 7. �

Theorem 8. The worst-case time and space complexity of Al-
gorithm 10 is O((d − 1)!sd−2(m + n)) and O(m + n + ds) re-
spectively, where s denotes the number of d-dimensional skyline
communities.

Proof. The most time-consuming step in Algorithm 10 is in
lines 7-12, because the algorithm needs to recursively invoke itself
with a parameter d − 1. Below, we analyze the time complexity
in this recursion procedure. Note that each d-dimensional skyline
community generates at most (d − 1) corner points by our al-
gorithm. Hence, the total number of (d − 1)-dimensional corner
points is bounded by (d − 1)s. By recursive analysis, we derive
that the algorithm invokes the ImprovedNew3D algorithm at most

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

470

20% 40% 60% 80% 100%
ratio

1.4

1.6

1.8

2

2.2

2.4

2.6

Ti
m

e(
Se

c)

SkylineComm2D

(a) Lastfm (vary n)

20% 40% 60% 80% 100%
ratio

0

0.5

1

1.5

2

2.5

3

Ti
m

e(
Se

c)

SkylineComm2D

(b) Lastfm (vary m)

Figure 11: Scalability of SkylineComm2D (k = 15)

(d − 1)s × (d − 2)s · · · × 3s times. Thus, the total time cost is
O((d− 1)!sd−2(m+n)). Note that by a similar recursive analysis,
we can see that the total time cost to update the corner points
in line 15 and the total time cost to push the corner points in-
to Q in lines 16-19 can be dominated by O((d − 1)!sd−2) and
O((d − 1)!sd−2(m + n)) respectively. Thus, the worst-case time
complexity of Algorithm 10 is O((d − 1)!sd−2(m + n)). For the
space complexity, the algorithm needs to maintain the graph and
the total number of corner points which use O(m + n + ds) s-
pace. �

A.2 Additional experiments
Additional Exp-1: Scalability of SkylineComm2D. We vary
the number of nodes (n) and edges (m) in the Lastfm network
with independent attributes to evaluate the scalability of the
SkylineComm2D algorithm. Similar scalability results can also be
observed in the other datasets with various types of attributes.
The results are shown in Fig. 11. As can be seen, SkylineComm2D
scales near linearly with varying m or n. This is because the num-
ber of 2D skyline communities is typically much smaller than n,
and thus the complexity of SkylineComm2D is near linear w.r.t.
O(m + n). These results confirm the complexity analysis in Sec-
tion 3.

Additional Exp-2: Efficiency of SkylineComm2D. Figs. 12 and
13 show the efficiency of the SkylineComm2D algorithm in the net-
works with correlated and anti-correlated attributes, respectively.
As can be seen, in these two types of attributed networks, the run-
ning time of SkylineComm2D decreases with increasing k. This is
because the graph size (i.e., the maximal k-core) decreases when
k increases. Compared to the results shown in Exp-1 (Fig. 5),
the running time of SkylineComm2D in the networks with corre-
lated attributes is much less than that of SkylineComm2D in the
networks with independent and anti-correlated attributes. For ex-
ample, when k = 5, SkylineComm2D takes 0.96 seconds to find
all skyline communities in the Flixster network with correlated
attributes (Fig. 12(d)), while it consumes 3.45 and 50 seconds in
the same network with independent and anti-correlated attributes
respectively (Fig. 5(d) and Fig. 13(d)). This is because the num-
ber of skyline communities in the correlated attributed network
is much smaller than the number of skyline communities in the
independent or anti-correlated attributed network. These results
confirm the complexity analysis of SkylineComm2D in Section 3.

Additional Exp-3: Efficiency of Basic and New (d = 3). For
d = 3, Figs. 14 and 15 report the efficiency of Basic and New in the
networks with correlated and anti-correlated attributes, respec-
tively. As can be observed, in both of these two types of datasets,
New is at least one order of magnitude faster than Basic in most
testings. Basic is intractable in the Lastfm and Flixster networks
with anti-correlated attributes (Figs. 15(c) and (d)), but New still
performs very well in these datasets. However, in all the network-
s with correlated attributes, both Basic and New work very well.
This is because in the networks with correlated attributes, the
number of skyline communities is not very large. These results
further confirm the time complexity analysis of our algorithms in
Sections 4 and 5.

Additional Exp-4: Efficiency of Basic and New (vary d). In
this experiment, we vary d and evaluate Basic and New in the De-
licious and Flixster networks with correlated and anti-correlated
attributes respectively. Note that when d = 2, we refer to both
Basic and New as the SkylineComm2D algorithm. The results are
shown in Figs. 16. We can observe that the running time of our

2 3 4 5
d

10-2

10-1

100

101

102

Ti
m

e(
Se

c)

Basic
New

(a) Delicious (Correlation)

2 3 4 5
d

10-1

100

101

102

103

Ti
m

e(
Se

c)

Basic
New

(b) Flixster (Correlation)

2 3 4 5
d

10-1

100

101

102

103

104

Inf

Ti
m

e(
Se

c)

Basic
New

(c) Delicious (Anti-
correlation)

2 3 4 5
d

101

102

103

104

Inf

Ti
m

e(
Se

c)

Basic
New

(d) Flixster (Anti-
correlation)

Figure 16: Efficiency of Basic and New (Vary d, k = 15)

20% 40% 60% 80% 100%
ratio

101

102

103

104

105

106

Ti
m

e(
Se

c)

New

(a) Lastfm (vary n)

20% 40% 60% 80% 100%
ratio

102

103

104

105

106

Ti
m

e(
Se

c)

New

(b) Lastfm (vary m)

Figure 17: Scalability of New (k = 15, d = 6)

2 3 4 5
d

101

102

103

104

105

s

Independence

(a) Delicious

2 3 4 5
d

101

102

103

104

105

s

Independence

(b) Flixster

Figure 18: Number of skyline communities (k = 15)

algorithms increases when d increases. Basic is intractable when
d ≥ 4 in the Flixster network with anti-correlated attributes. Al-
so, New is at least one order of magnitude faster than Basic when
d ≥ 3. Similar to the results in the independent attributed net-
works, the running time of New increases by 10 times when d
increases by 1 in the networks with anti-correlated attributes, as
the number of skyline communities increases very fast with in-
creasing d. However, in the networks with correlated attributes,
both Basic and New work very well for all d, because in this case
the number of skyline communities does not increases very quickly
when d increases.

Additional Exp-5: Scalability. We evaluate the scalability of
New when d > 5. To this end, we vary n and m in the Lastfm
network with independent attributes. The results for d = 6 are
reported in Fig. 17. Similar results can also be observed for other d
values. As can be seen, the running time of New increases smoothly
with varying m and n, implying that the algorithm scales well
w.r.t. the graph size. These results indicate that New is scalable
to handle large real-world graphs given that d = 6. Since d is often
very small (e.g., d ≤ 5), our algorithm is scalable to handle most
real-world applications.

Additional Exp-6: Number of skyline communities. We
show the number of skyline communities found by our algorithm
with varying d. The results in Delicious and Flixster networks with
independent attributes are depicted in Fig. 18. Similar results can
also be observed in the other datasets. From Fig. 18, we can see
that the number of skyline communities, denoted by s, increases
by 10 times when d increase by 1. These results are consistent
with the efficiency results of our algorithms.

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

471

5 10 15 20 25
k

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Ti
m

e(
Se

c)

SkylineComm2D

(a) Slashdot

5 10 15 20 25
k

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ti
m

e(
Se

c)

SkylineComm2D

(b) Delicious

5 10 15 20 25
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e(
Se

c)

SkylineComm2D

(c) Lastfm

5 10 15 20 25
k

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ti
m

e(
Se

c)

SkylineComm2D

(d) Flixster

Figure 12: Efficiency of SkylineComm2D in networks with correlated attributes (vary k)

5 10 15 20 25
k

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ti
m

e(
Se

c)

SkylineComm2D

(a) Slashdot

5 10 15 20 25
k

0

0.5

1

1.5

2

2.5

3

3.5

4

Ti
m

e(
Se

c)

SkylineComm2D

(b) Delicious

5 10 15 20 25
k

0

5

10

15

20

25

30

35

40

Ti
m

e(
Se

c)

SkylineComm2D

(c) Lastfm

5 10 15 20 25
k

5
10
15
20
25
30
35
40
45
50

Ti
m

e(
Se

c)

SkylineComm2D

(d) Flixster

Figure 13: Efficiency of SkylineComm2D in networks with anti-correlated attributes (vary k)

5 10 15 20 25
k

10-2

10-1

100

101

Ti
m

e(
Se

c)

Basic
New

(a) Slashdot

5 10 15 20 25
k

10-3

10-2

10-1

100

101

102

103

Ti
m

e(
Se

c)

Basic
New

(b) Delicious

5 10 15 20 25
k

10-1

100

101

102

103

104

Ti
m

e(
Se

c)

Basic
New

(c) Lastfm

5 10 15 20 25
k

10-1

100

101

102

103

104

Ti
m

e(
Se

c)

Basic
New

(d) Flixster

Figure 14: Efficiency of Basic and New in networks with correlated attributes (vary k, d = 3)

5 10 15 20 25
k

100

101

102

103

104

Ti
m

e(
Se

c)

Basic
New

(a) Slashdot

5 10 15 20 25
k

10-1

100

101

102

103

104

Inf

Ti
m

e(
Se

c)

Basic
New

(b) Delicious

5 10 15 20 25
k

102

103

104

Inf

Ti
m

e(
Se

c)

Basic
New

(c) Lastfm

5 10 15 20 25
k

102

103

104

Inf

Ti
m

e(
Se

c)

Basic
New

(d) Flixster

Figure 15: Efficiency of Basic and New in networks with anti-correlated attributes (vary k, d = 3)

Additional Exp-7: Results on random graphs. Here we eval-
uate the performance of our algorithms on the large-scale power-
law random graphs. To this end, we generate a power-law graph
with n = 5M and m = 7.3M and a set of power-law graphs with
more than 10 million nodes and edges. All these power-law graphs
are generated by a random graph generator developed in SNAP
(snap.stanford.edu) with a power-law degree exponent γ = 2.5.
For each node in the power-law graph, we randomly generate d in-
dependent numerical attributes using a uniform distribution. The
results are reported in Fig. 19. From Fig. 19(a), both Basic and
New are scalable to a million-scale graph for a large d value (e.g.,
d = 10). The running time of Basic and New increases with an
increasing d. Fig. 19(b) shows that the running time of Basic and
New decreases as k increases. Generally, New is around one order
of magnitude faster than Basic. Figs. 19(c-d) show the running
time of New with varying m. As can be seen, New shows very
good scalability performance with respect to m. Even when d = 6,
New takes round 20,000 seconds in a graph with 100 million edges.
These results further demonstrate the efficiency and scalability of
the proposed algorithms.

A.3 Additional related work
Skyline computation. The skyline computation problem was
originally studied in the theory community. Kung et al. [14] pro-
posed an O(n logn) algorithm to find the skyline in 2D space.

For the d-dimensional space, they also proposed an O(n logd−2 n)
algorithm. In the database community, the skyline operator was
first introduced by Borzsonyi et al. [4]. A large number of algo-
rithms have since been devised to efficiently find the skyline under

2 3 4 5 6 7 8 9 10
d

10-3

10-2

10-1

100

101

102

103

104
Inf

Ti
m

e(
Se

c)

Basic
New

(a) Vary d (m = 7.3M , k = 15)

5 10 15 20 25
k

10-1

100

101

102

103

104

Ti
m

e(
Se

c)

Basic
New

(b) Vary k (m = 7.3M , d = 6)

1 2 3 4 5 6 7 8 9 10
m ×107

10-1

100

101

102

103

Ti
m

e(
Se

c)

New

(c) Vary m (d = 3, k = 15)

1 2 3 4 5 6 7 8 9 10
m ×107

101

102

103

104

105

Ti
m

e(
Se

c)

New

(d) Vary m (d = 6, k = 15)

Figure 19: Results on the power-law random graphs

different settings [2, 7, 17, 18, 21]. For example, Papadias et al.
[17] proposed an efficient algorithm for progressively finding the
skyline. Sheng and Tao [21] proposed an external-memory algo-
rithm to compute the skyline efficiently. Pei et al. [18] studied
the skyline computation problem for uncertain data. Asudeh et
al. [2] studied the skyline computation problem for hidden web
data. In this work, we are the first to study the skyline commu-
nity search problem, where the skyline operator is defined over
all the communities in a multi-valued graph. Since our problem
is fundamentally different from previous skyline problems, all the
existing algorithms cannot be used for skyline community search.

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

472

